Working Towards a Forecast of Lake Erie Cyanobacterial Bloom Toxicity

Justin Chaffin PhD, Stone Laboratory, Ohio Sea Grant, The Ohio State University
J. Bratton, E. Verhamme, T. Davis, T. Bridgeman, J. Westrick, P. Xue, G. Dick, K. Meyer

FL SG HABs
Lake Erie cyanobacterial blooms

Roger Knight

July 25 2015
3,144 ppb

Todd Crail
Satellite bloom data since 2002 shows variation in bloom biomass
Maumee River phosphorus load March-July explains the size of the bloom

Stumpf et al., 2016. J Great Lakes Res
Annual bloom biomass is forecasted in early July based on spring-time Maumee River phosphorus load: NOAA HAB Bulletin
Biomass and location can be monitored and forecasted 3 days out with current models

Satellite HAB biomass data + Current models

NOAA Lake Erie HAB bulletin
Fundamental questions remain about the controls and predictability of toxin production.

- A toxin forecast cannot simply rely on cyanobacterial biomass

Chaffin unpublished
Fundamental questions remain about the controls and predictability of toxin production.

- A toxin forecast cannot simply rely on cyanobacterial biomass

![Graph showing correlation between cyanobacteria chl a (μg/L) and total microcystins (μg/L).](image)

P < 0.001
R = 0.63
N = 831

Chaffin unpublished
Fundamental questions remain about the controls and predictability of toxin production.

- A toxin forecast cannot simply rely on cyanobacterial biomass.

98% of samples were within these ranges.

Chaffin unpublished
Fundamental questions remain about the controls and predictability of toxin production.

- A toxin forecast cannot simply rely on cyanobacterial biomass.

\[
\text{Cyanobacterial biomass} \neq \text{Toxin concentration}
\]

\[
\text{Toxin concentration} \neq \text{Toxicity}
\]

98% of samples were within these ranges.

Chaffin unpublished
The role of nitrogen in bloom growth and toxin production:

• *Microcystis* cannot grow or make microcystins without combined nitrogen.
 • *Microcystis* cannot use atmospheric N₂
 • Some other cyanobacteria can use atmospheric dinitrogen gas by the process called nitrogen fixation
The role of nitrogen in bloom growth and toxin production:

• *Microcystis* cannot grow or make microcystins without combined nitrogen.
 • *Microcystis* cannot use atmospheric N_2

• Microcystins are 14% nitrogen by mass.
 • *Microcystis* is only 7% nitrogen by mass (Chaffin et al. 2011).
 • Thus, making microcystins are expensive in terms of nitrogen.
The ratio of microcystins to cyanobacteria biomass decreases with nitrate concentration

- Toxic strains to non-toxic strains as nitrate decreases

Chaffin et al. 2018 ESPR

Davis unpublished
Nitrogen limits HAB biomass and MC production during August and September.

Congeners (and toxicity) differ with nitrate availability: MC-RR decreases, LA increases

MC-RR is much less toxic than MC-LR
MC-LA is as toxic MC-LR
Linking lake data, experiments, models
Linking lake data, experiments, models

- Data from
 - Researchers
 - Water treatment plants
 - Citizen scientists

- Large dataset allows us to:
 - Estimate total toxin mass in the lake daily, weekly, and yearly
 - Determine spatial autocorrelation among samples
Challenges to microcystins concentrations spatial interpolations

N=16

N=2
Challenges to microcystins concentrations spatial interpolations

N=16

N=2
HABs Grab 2019 – Research Team

Funded in part by NOAA ECOHAB:

NCCOS | NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE
ECOHAB HABs Grab 9 August 2018

Sampling Locations:
- UT LEC
- OSU Stone Lab
- LimnoTech
- BGSU

NOAA HAB Bulletin 6 August 2018
Toxin Mass =

This is a very scary number. Messaging is critical.
This is a very scary number. Messaging is critical.
Change in total microcystins mass from day to day is a rate of change -> a net production rate
Quantifying MC production rates by experiments

Control P&NO3 P&NH4 P&Urea
Developing (determining if it is feasible) toxicity forecast on multiple scales

• Seasonal forecast – similar to Rick’s seasonal biomass forecast
 • Lake-wide
 • Can total toxin mass be explained by environmental variables?

• Weekly
 • Use biomass data (satellite), current models, and estimated nitrogen and toxic:total ratio to estimate toxins in time and space
 • A concentration value
 • Probably of experience more or less toxins
Key components of a toxin forecast:

1. The ratio of toxic *Microcystis* to total *Microcystis*
 - Affected by nitrogen availability
 - Biomass data

2. Microcystins production rates
 - fg per *mcyE* gene copy
 - Ambient and elevated nutrient concentrations
 - Experiments being conducted during 2018 and 2019
 - Compared to model production rates
Key components of a toxin forecast:

3. Nitrogen concentration model
 • WLEEM (Western Lake Erie Ecosystem Model)
 • LimnoTech Inc.

Verhamme et al. 2016
J Gt Lakes Res
Modelled nitrate concentration from WLEEM

- Model also works for P, Temp, Cyanobacteria biomass

Verhamme et al. 2016 J Gt Lakes Res
Key components of a toxin forecast:

4. Current model to move and dilute toxins and cyanobacteria

• FVCOM is a current model that does not include biology
Key components of a toxin forecast:

5. Microcystin degradation rates
 • Field and experiments
 • Loss rates determine by microcystin biodegradation byproducts.

Schmidt et al. 2014 Toxins
Linking process models and field experiments to forecast microcystin concentrations in Lake Erie

• Current direction is to integrate biological parameters (*Microcystis* biomass, toxic:total) from WLEEM into FVCOM for toxin distribution

• Incorporate model results into NOAA HAB Bulletin and HAB tracker
 • Public awareness
 • Water treatment decisions
Increased readiness to remove toxins at WTP

Safer tap water for consumers

Toxin forecast
Acknowledgements

- NOAA NCCOS ECOHAB

- Ohio Sea Grant
- Ohio EPA
- Ohio Water Resources Center
- Ohio Department Higher Education
- Fondriest Environmental
- Stone Lab staff and students
Summer internships/jobs available at Stone Lab for undergrads and recent college grads. Visit stonelab.osu.edu