TRACKING NUTRIENTS THROUGH SYSTEMS

Complexities of Tracking Nutrients on the West Florida Coast: Hurricanes and Upwelling Events

Yonggang Liu

Associate Professor

University of South Florida, College of Marine Science

BACKGROUND

Hurricane events: extreme rainfall & excessive nutrients of land origin. West Florida Shelf upwelling: seasonal variation – wind driven; interannual variation – the Loop Current interaction with the shelf slope.

Strong upwelling can transport inorganic nutrients of deepwater origin onto the shelf.

TRACKING NUTRIENTS

LC forced strong upwelling in 2010: cold water advected to inner shelf (left). Hurricane Ian (2022) resulted in a large coastal turbidity water plume (right).

CHALLENGES

Offshore LC forced upwelling events:

Don't know what inorganic nutrients are out there, their concentrations or volumes. How long time to reach and stay on the inner shelf? May affect bloom initiation, development & termination (thru advection). How to effectively monitor? Predictable or not?

Hurricane events:

Nutrients of land origin contribute to bloom development? How much nutrients are available? How long do they stay on the shelf? Nutrient (water quality) monitoring system in estuaries.

REFLECTION

Would deploy moorings on the northern WFS, add SUNA to moorings, expand water quality network, have enough redundant sensors/parts.

ACKNOWLEDGEMENTS

The coordinated long-term observing and modeling program on the WFS have been supported through various external awards from: USGS, the State of Florida, BOEM, ONR, NOAA, NASA, NSF, & NASEM.

Current support was by Florida DEP, FWC/FWRI, TBEP, FL Flood Hub. NOAA IOOS/SECOORA/CARICOOS, NCCOS & COMIT, EPA, & SFWMD.

