MANAGEMENT & MITIGATION

Chemical control of cyanoHABs

Dail Laughinghouse, Ph.D.

Asst. Professor & State Extension Specialist

University of Florida - IFAS

1

PROJECT SUMMARIES

- Determine efficacy of 13 & 15 algaecides/ herbicides or combinations on LO *M. aeruginosa-*dominated & *M. wesenbergii*dominated bloom (Kinley-Baird et al. 2021; Lefler et al. 2022)
- Mesocosm trial evaluating PAK[®] 27 in LO (Pokrzywinski et al. 2022)
- Stability of 3 H₂O₂-based algaecides to salinity and organic matter (Hu et al. 2022)
- Sorption of MC using LMB (Laughinghouse et al. 2020)
- Use of pyrolyzed materials for MC sorption (Frišták et al. 2020)
- Effect of temp. on efficacy of Cu- & H₂O₂-based algaecides of *Planktothrix* & *Microcystis* blooms (Taylor et al. in prep)
- In situ effects of PAK[®] 27 on total microbial community structure (non-targets) (Lefler et al. in prep)

MAJOR TAKEAWAYS

- <u>M. aeruginosa</u>: GreenClean Liquid[®](GCL) 5.0, GCL[®] 5.0 w/ Hydrothol[®]
 191 & Cu-based algaecides (Algimycin[®] PWF, Argos, Captain[®] XTR, Cutrine[®] Ultra & SeClear[®]) → most effective.
- <u>MCs</u>: Chelated Cu-based formulations (Algimycin[®] PWF, Argos, Captain[®] XTR, & Cutrine[®] Ultra) result in less MC release post treatment. High release of MCs with H₂O₂-based formulations.
- <u>M. wesenbergii</u>: SeClear[®] and GCL[®] 5.0 w/ Hydrothol[®] 191 → most effective. Mw is 'tougher' than Ma.

MAJOR TAKEAWAYS

- <u>LO</u>: Sequential dose of PAK[®] 27 necessary to sustain efficacy in field. Rebound in single dose.
 - 1/2-life of PAK[®] 27 = 19hrs
- Salinity & organic matter impact stability & decomposition of H₂O₂-based algaecides. → Oximycin[®] P5 most stable (7.3 day ½-life).

Peroxide-based algaecide degradation first-order kinetics model and half-life (day)*

		Natural seawater
GreenClean® Liquid 5.0	k	0.662
	$T_{1/2}$	1.05
	r^2	0.749
PAK® 27	k	1.231
	$T_{1/2}$	0.56
	r^2	0.984
Oximycin® P5	k	0.095
	$T_{1/2}$	7.30
	r^2	0.791

The algaecide degradation rate did not fit the first-order kinetics model in filtered

ADDITIONAL RELEVANT INFO

- LMB can be used to scrub MC from the water >500ppb. 'Shock 'n lock'
- **Pyrolyzed materials** can be used to sorbe MC.
 - Feedstocks differ in efficacy
- Non-targets affected differently
- Efficacy of algaecides differ, independent of active ingredient
 - H₂O quality, temperature, target species and concentrations, algaecid formulation, dose

- microcystin-LR

RESEARCH PRIORITIES

- Determine if your management practice will actually achieve the goal of reducing blooms in Lake Okeechobee and what the ramifications are (chemical, biological, ecological, socioeconomic)
- Develop blue-green algae control methods

NEW DATA GAPS

- Not all waters are the same, not all cyanobacteria (& algae) are the same
 - Efficacy of treatment methods differ
- Assess the feasibility for different systems (scale-up and cost)
- Need long-term data on effects of chemical formulations, proposed bacteria, proposed enzymes on environment and non-target

organisms.

ACKNOWLEDGEMENTS

- <u>hlaughinghouse@ufl.edu</u>
- Lab members
- Funding agencies
- Collaborators
 - C. Kinley-Baird
 - A. Calomeni
 - W. Bishop
 - V. Frišták
 - K. Pokrzywinski
 - H. Raymond

US Army Corps of Engineers.

